| Bk Mt

- S AES ;
' A gy
- . 332850
\ .
Fg\ Vi 3
%’
Input/Output Behavior of
Supercomputing Applications
Ethan L. Miller
o - T aruav E N91-13633
s c-157556) ImpuT/UUTPUT acﬂAV[GB U
i@??ﬁcgipﬁrrio APPLICATIONS (Cal-foggéi 098
S ? i unclas
Univ.) 329 c3/01 0332850)
o ——— B

Il

(1) .
PYTA
b K

"
L/ .

Y
o

]

Report No. UCB/CSD 91/616

January 1991 P

Computer Science Division (EECS)
University of California
Berkeley, California 94720

— TR

Input/Output Behavior of Supercomputing Applications

Ethan L. Miller
Computer Science Division
Department of Electrical Engineering
and Computer Science
University of California, Berkeley
Berkeley, CA 94720
December 14, 1990

ABSTRACT:
This paper describes the collection and analysis of supercomputer /O
traces and their use in a collection of buffering and caching
simulations. This serves two purposes. First, it gives a model of
how individual applications running on supercomputers request file
system I/O, allowing system designers to optimize 1/O hardware and
file system algorithms to that model. Second, the buffering
simulations show what resources are needed to maximize the CPU
utilization of a supercomputer given a very bursty I/O request rate.
By using read-ahead and write-behind in a large solid-state disk, one
or two applications were sufficient to fully utilize a Cray Y-MP CPU.

1. Introduction

Over the last few years, CPUs have seen tremendous gains in performance. I/O systems and
memory systems, however, have not enjoyed the same rate of increase. As a result, supercomputer
applications are generating more data, but I/O systems are becoming less able to cope with this huge
volume of information. Multiprocessors are exacerbating this problem, as the number of disks and
tape drives in the I/O system, and thus aggregate I/O bandwidth, increase. Bandwidth is not
usually scaled up at the same rate as the aggregate processing speed, however. According to

Amdahl's metric, each MIPS (million instructions per second) should be accompanied by one Mbit

per second of I/O. Solving this problem requires correct matching of bandwidth capability to
application bandwidth requirements, and using buffering to reduce the peak bandwidth that the I/O
system must handle. To better determine the necessary hardware bandwidth and software buffer
sizing and policies, the I/O patterns of applications running on such computers must first be
analyzed. To do this requires I/O access traces from real supercomputing applications, which we
have gathered for the analysis in this report.

This paper first examines general file system characteristics, especially those important to super-
computers. Next, the applications which were traced will be described, followed by some analysis
of the traces. Finally, we present the results of simulations of various methods, such as read-ahead

and write-behind, to reduce peak and overall I/O demand for supercomputer file access patterns.
2. Overview
2.1. Conventional File Systems

Caching, the most effective method for reducing I/O bandwidth requirements, has been widely used
in conventional file systems. It succeeds because of the properties commonly exhibited by many
workstation and minicomputer applications, such as locality of reference in time and space [5]. For
example, with a 2 MB cache on a VAX, only 17.7% of the applications’ requests had to be fetched
from disk. Prefetching data into a cache also reduces the instantaneous demand on an I/O system
by spreading out demand and by predicting 1/O references. This has the effect of reducing the
number of requests, though not necessarily the amount of data transferred. In [5], sequential reads
and writes accounted for over 90% of the accesses to files which were either read or written, but not

both, and about 67% of total data transferred.

Another method of reducing 1/Os from cache to disk is delayed writes. Delayed writes require a

write-behind cache policy, which allows a program to continue executing after writing data to the

cache without waiting for the data to be written to disk. In Sprite [4], data is not written back to disk
for 30 to 60 seconds. Every 30 seconds, all data in the cache that is older than 30 seconds is
written to disk, allowing the operating system to group all the writes. This allows temporary files
which exist for less than 30 seconds, such as those generated by compilers, to be deleted and thus
never written to disk. The 30 second delay is itself a file system parameter, and balances the
reduced bandwidth to disk against the risk of losing data by not writing it to disk immediately. By
totally eliminating disk I/Os associated with such files, the required bandwidth from cache to disk is
reduced further.

These methods can be applied to supercomputer file systems, but there must be some changes to
reflect the differences between interactive and small batch jobs run on smaller computers and the

large vectorized applications run on supercomputers.
2.2. Supercomputer Environment

The production supercomputer environment is different from a conventional workstation and
minicomputer environment. It is characterized by a few very large processes that consume huge
amounts of memory and CPU time. Jobs are not interactive; instead, they are submitted in batch
and run whenever the scheduler can find memory space and CPU time for them. This difference
allows the scheduler better to plan usage of memory and CPU resources, as it has a relatively static
queue of jobs to run, as opposed to the rapidly changing queue of interactive jobs. Such resource
scheduling is often necessary, however, since many jobs require hundreds of megabytes of

memory and hours of CPU time.

An example of a large supercomputing environment is the Cray Y-MP 8/832 at NASA Ames, the
computer on which we traced several of the applications. This computer has eight processors, each

with a 6 ns cycle time. The system has a total of 128 MW (each word is eight bytes long) shared

among the eight processors. The I/O system has many high-speed disks, each capable of sustaining
9.6 MB/sec, totalling 35.2 GB, a 256 MW solid state disk (SSD) acting as an operating-system
managed cache for a single filesystem (not the entire collection of disks), and several terabytes of
nearline and offline tape storage [2,3]. The tape storage is divided into two parts—a nearline
storage facility called the Mass Storage System (MSS), which can automatically mount tapes with
requested data, and the extensive offline tape library which requires operator intervention. The
NASA Cray system already has the maximum configuration of Y-MP memory (128 MW), so /O
problems cannot be alleviated simply by adding more primary memory.

The UNICOS process scheduling mechanism at NASA also affects the way programmers choose to
structure their implementations, and thus I/O demands. Batch jobs, which include any program
requiring over 10 minutes of Cray CPU time, are queued according to two resource requirements—
CPU time and memory space. As the Cray Y-MP does not have virtual memory, all of a program's
memory must be contiguously allocated when the program starts up, and cannot be released until
the program finishes. To simplify memory allocation, each queue is given a fixed memory space.
A job ready to run and residing in memory is run on any of the eight processors that is available. It
runs until it must wait for a disk /O, at which time it is suspended. This program remains in
memory, and another program that is ready to run is given to the that processor. Since there are
eight processors, there must be at least eight jobs in memory and ready to run to keep all of the
processors busy. In practice, n+1 jobs resident in main memory will keep n processors busy,
given a typical supercomputer workload [8]. To get these n+1 jobs, a single queue, especially one
with low memory requirements, may have multiple applications in memory at the same time. Thus,
for a given amount of CPU time required by an application, turnaround time is shortest for the
application which requires the least main memory. Programmers take advantage of this by

structuring their program to use smaller in-memory data structures while staging data to/from SSD

or disk.

2.3. Supercomputer Applications

Because of their high-speed vector processing ability, supercomputers are ideally suited to problems
that require manipulations of large arrays of data such as computational chemistry, computational
fluid dynamics, structural dynamics, and seismology, to name a few. These problems all require
large numbers of floating-point computations, which are usually vectorizable, over large data sets:
from hundreds of megabytes up to tens or hundreds of gigabytes for some seismic computations.

In most cases, the application performs multiple iterations over the data set, as when simulating a

model through time.
3. Applications Traced

The first part of the study was an analysis of the /O patterns of actual applications. We gathered
traces from a variety of applications running on Cray computers, usually Y-MPs. We chose to trace
applications with high 1/O rates, both in megabytes per second and I/Os per second. While many
supercomputer applications do not perform large amounts of /O [8], we decided to concentrate on
applications that do a lot of I/O. I/O-intensive applications stress the I/O system more, revealing
performance bottlenecks. Those that perform little I/O are easy to characterize, as will be shown

with the two traces that had low levels of I/O.

The traces fell into several categories. Most were computational fluid dynamics (CFD) problems,
which are concerned with modeling the flows of fluids, such as water and air. However, each
modeled different physical objects and made use of different algorithms. Several of the programs
were climate models, while others modeled vortices around a moving blade. One program solved a
structural dynamics problem, and one did polynomial factorization. In Table 1, we summarize
some basic information about the applications. Running time is the amount of CPU time each

program required. All of the other numbers are relative to this time, not elapsed wall clock time.

Application Runﬂing Total data | Total /O | Number |Avg VO |MB/sec |10s/sec
Time (sec)| size (MB) | done (MB)| of 1/Os |size (MB)

bvi (CFD) 1258 171 22 835 1,380,457 0.016 18.2 1097
ccm (climate) 205 11.6 1,812 54,125 0.031 8.8 264
forma (structural) 206 30.0 15,155 475,826 0.030 73.6 2310

| gem (climate) 1897 229 266.2 7,953 0.031 0.14 4.2
les (large eddy) 146 224 7,803 22,384 0.317 534 153
venus (climate) 379 55.2 16,712 34,904 0.032 44.1 92
upw (polynomial) 596 61.5 1,840 0.445 0.10 3.1

Table 1 : Characteristics of the traced applications.

Total I/O done is the total amount of data the program read and wrote, and number of I/Os is
the number of read and write calls the program made to the file system. The total size of the data
set, which was the sum of the sizes of all the files the program accessed, is listed under total data

size.

The first group is the climate models. These included gem (Global Climate Model), ccm
(Community Climate Model), and venus (a simulation of Venus' atmosphere). These were all

CFD models which simulated atmospheres.

The major differences between the atmosphere models were the sizes of the data arrays in the
simulations, the methods used to actually implement the algorithms, and the tradeoff each algorithm
made between main memory size and I/O system usage. Gem was primarily an in-memory
simulation—the only data that went through the operating system were final results. The data fit

into a main memory array, obviating the need to stage data from disk. As a result, the program did

few I/Os. The venus code went to the other extreme. To get into a shorter job queue, the
program's implementor decided to use a very small in-memory array. Thus, the program accessed
the file system frequently to stage the required data to and from memory. Ccm took the
intermediate point between the two, requiring fewer megabytes per second of program execution
than venus but far more than gem, probably because its in-memory data array was intermediate in

size between the other two programs’.

The bvi (biadc-vortcx interaction) program was also a CFD program, but it simulated the
interactions of a helicopter blade with the air around it. It was the only one of the programs traced
explicitly designed for use with the SSD (solid state disk) on the Cray. Since the SSD has zero
seek time and a very high transfer rate, the program did not suffer a major performance loss from
the many small I/Os it made. I/Os to and from the SSD are done without suspending the process
requesting the I/O, because the data is retrieved quickly. However, as will be discussed later, the
file system overhead may have slowed the program down by using more operating system time.
This added a sizable penalty, more than would be incurred for a large request replacing several

small ones.

The les (large eddy simulation) application used the Navier-Stokes method with turbulence. This
algorithm only calculates large-scale effects from the Navier-Stokes equations and directly models
the small-scale effects. A more complete description of the algorithm is beyond this paper, but one
can be found in [6].

Upw (approximate polynomial factorization) did the least I/O of any application traced. This
program read a small input file, computed for ten CPU minutes, and wrote out an answer. It is an
important program, however, since this is a representative 1/O pattern for some applications. The

program infrequently requests a few large 1/Os.

The last program traced was called forma. This program was originally written for a Cray 1, with
its small memory, and uses sparse matrices to solve structural dynamics problems. In this
program, I/O serves a secondary purpose beyond simply staging data in and out. By breaking up
the data array into blocks, empty blocks can be easily identified and created in memory instead of
being staged in. Thus, there is a secondary tradeoff between I/O size and required bandwidth. A
larger block would allow more efficient I/O requests, but it also might require more I/O bandwidth,
since a non-empty subarray of size 2N x 2N might contain three empty N x N arrays. The 2N x 2N
subarrays would then require four times the data rate of the N x N subarrays. The programmer
seems to have chosen a relatively large access size despite the possible advantages of using a

smaller one.
4. Tracing Methods
4.1. Information Traced

The traces gathered included two types of information. First, they recorded file and disk reference
information, so the pattern of references to the file system (for logical-level traces) and physical disk
sectors (for physical-level traces) could be reconstructed. File identifiers corresponded to file
opens; if the same file was opened twice by a program, it received two different identifiers.
Second, timestamps were taken for each I/O. There were three timestamps for each I/O event. The
first timestamp was total elapsed wall time, which was obtained from a timer register in the CPU.
This value was in units most convenient to the system; for the Cray Y-MP, it was in 6 ns clock
ticks, as there is a counter in the CPU which is incremented every clock cycle. For traces in our
standard format, this value was converted to 10 ps units, as we believed this was sufficient time
resolution for I/O traces. The second timestamp measured the wall clock time between when the 1/O

request was made by the application and when the completion status was returned. This timestamp

Flags “Compression] Offset “Size | Start Time EIapseETTme FileID | Op ID | Proc.1ID
FE 0 0 10 SAF8 32C 1D 89 743E

Flags - logical/physical I/O, read/write, synchronous/asynchronous

Compression - information about which fields can be calculated from previous records
Offset, size - where in the file (disk) the I/O took place

Start time - start of this J/O relative to the start of the previous /O

Elapsed time - duration until completion of this /O

File ID - identify file (disk) the I/O occured on

Op ID - unique for each call to the file system

Proc ID - process identifier

Figure 1
might have been affected by the scheduler, since a program that waits for I/O is not guaranteed to be
restarted immediately when the I/O completes. The third timestamp was process clapsed time,
indicating the amount of CPU time the particular process had been running. Thus, the effects of
multiprogramming could be filtered, as the process elapsed time between I/O events would be

constant no matter how often the process was swapped out.
4.2. Trace Format

The I/O accesses the applications made were all recorded in a standard trace format that was
designed to be used for both logical and physical I/O traces. The format was also designed with
trace compression in mind, as mentioned in [7]. This section gives a high-level of the format; for

details, see the appendix.

Figure 1 shows a sample trace record. Compression techniques worked especially well for
supercomputer traces for two reasons—file accesses were highly sequential, and a very large
majority of the accesses went to only a small number of files. Both of these characteristics will be

discussed in more detail later.

To save disk space and trace-gathering time, the traces were compressed in two ways. First, some
fields could be specified relative to the record immediately preceding it. These fields included the
timestamp fields and the file identifier field. Instead of recording a full 8 or 9 digit time, only the
clapsed time since the last record was recorded. A bit in the compression field was set if the file
identifier was the same as in the previous record. The second method of compressing data was to
record I/O sizes, I/O lengths, and process identifiers relative to the last I/O made 1o that file. Again,
a few bits in the compression field could indicate that the I/O was sequential with the last I/O to that
file, or that the I/O was the same size as that file’s last I/O. In this way, the trace of a pfogram
which made interleaved accesses to several files, such as venus, was still compressed efficiently.
While we only collected logical-level trace data on the Cray, we included provisions for our trace

format to include physical I/Os as well.
4.3. Trace Gathering Methods on the Cray Y-MP

All of the data on the Cray Y-MP is logical-level traces. This data included logical file numbers, file
offsets, request sizes, and wall clock and process clock timestamps. Because no collected data was
internal to the operating system (as physical disk block numbers would be), all the data could be
collected by code running at user level. Thus, no modifications to the operating system were
necessary. This was a distinct advantage on the Cray, since it would have been very difficult to

obtain the amount of dedicated time necessary to debug changes to the operating system.

Instead of modifying the operating system, we changed the user libraries dealing with I/O. Cray
provides data collection hooks in standard system libraries shipped with Unicos 5.0. These hooks
merely provide aggregate data on I/O, such as the total number of bytes a process requested and the
average and maximum times to do an I/O. In addition, major events such as file opens, closes and

process forks are traced by the standard Cray software, though we did not use the data in these trace

-10-

packets except to check some of our results. Trace packets are sent to a process on the Cray called
procstat. The procstat process collects these trace records, which include an 8 word header and
whatever data is necessary for the system call being recorded, and writes the records to a trace file

for later analysis. A diagram of the path trace information takes is shown in Figure 2.

system call
results

]

Figure 2

Merely modifying the libraries to produce one trace record per read and write call would have
produced far too much data. The trace record headers are large compared to the amount of data
recorded per call, between three and five words. Operations on each file were sent in batches, so
‘one header served for hundreds of 1/O calls and the header overhead was amortized over many

calls. In addition, trace packets were forced out every hundred thousand I/Os. This was done since

-11-

each packet recorded data for just one file, and a file with litle I/O, such as a parameter file, might
have two 1/Os separated by hundreds of thousands of I/Os to a data file. Reconstructing a single
stream of all the accesses from the file of packets requires buffering all the I/Os between flushes,

since a packet written during the flush might contain an I/O access from much earlier in the

program’s execution.

There was very little CPU overhead required to collect traces in this manner. There was no
overhead during non-I/O operations because the tracing mechanism was only active during an I/O
call to the operating system. Also, the amount of code executed per I/O was small compared to the
code normally executed by the operating system to handle an I/O request. Overheads were less than
20% of I/O system call time, and total overhead was completely dependent on the amount of I/O

done by the application.

While this trace collection method is standard on UNICOS, and vendor-supplied software contains
most of the code necessary for tracing, the same method could easily be used to instrument standard
libraries on other computers and collect traces from applications running on them. The only major
system requirement is an accurate clock. An operating system which supports Unix-style pipes
would also make it easier to implement the trace collection software because we used pipes to pass

trace data from applications to procstat.

5. YO Pattern Analysis

There has been much analysis of overall supercomputer performance in both the 1/O and CPU
usage. However, the I/O usage studies have focused primarily on overall system performance over
relatively long periods, ranging from many minutes to several weeks [8]. While these studies are
very useful for analyzing current CPUs, inferences from current systems to future systems may be

difficult because parameters change in different ways. For example, larger or smaller memory

-12-

systems relative to CPU speed will certainly affect overall system performance, but an accurate

picture requires examining individual applications and their interactions under new system

parameters.

5.1. Types of Application I/O

All of the I/O accesses made by the programs can be divided into three types—required, checkpoint,
and data swapping. Required I/Os are similar to hardware cache misses called compulsory in [1].
These consist of I/Os that must be made to read a program’s initial state from the disk and write the
final state back to disk when the program has finished. For example, a program might read a
configuration file and perhaps an initial set of data points, and then write out the final set of data
points along with graphical and textual representations of the results. These I/Os, however, do not
contribute much to the overall I/O rate. For a program which runs for only 200 seconds, reading 50
MB of configuration and initialization data and writing 100 MB of output, the overall I/O rate is
only .75 MB/sec. This rate is easily sustainable by most workstations, and certainly does not
demand complex solutions. While the peak I/O rates at the start and end of the program will be
high, they will only occupy a small fraction of the total running time of the program. Upw and
gem are examples of programs that only do compulsory I/O.

Checkpoints, the second type of 1/O, are used to save the state of a computation in case of a
hardware or software error which would require the simulation to be restarted. A checkpoint file
generally consists of some subset, possibly complete, of the program'’s in-memory data.
Checkpoints are generally made every few iterations, though making them too often slows the
program down unnecessarily. The application writer balances the cost of writing the checkpoint
against the cost of redoing lost iterations of the simulation. The likelihood of failure determines the
number of iterations between checkpoints. Since checkpoints occur multiple times per program,

they add more to the bandwidth requirement than required I/O, but they also do not place a

-13-

continuous high demand on the I/O system. For a program that saves 40 MB of state every 20
CPU seconds, the average I/O rate is only 2 MB/sec, far less than the maximum rate most
but since the I/Os occur relatively infrequently, it is easy to have another program ready to run (and
not in the checkpoint stage itself) while the first program is waiting for checkpoint I/Os to

complete.

The third type of I/Os are those done because the memory allocated to the problem is insufficient to
hold the entire problem. These I/Os are the equivalent of paging under a paging virtual memory
operating system, but they are generally done under program control because many supercomputers
lack paging. Even when paging exists, the program is better able than the operating system to
predict which data it will need. Unlike the other two types of 1/O above, memory-limitation I/O
must be done on every iteration of the algorithm. The entire data set is usually shuttled in and out of
memory at least once, and perhaps more often. If each data point consists of 3 words and requires
200 floating-point operations, there must be 24 bytes of I/O for every 200 FLOPS (this is quite
close to Amdahl's metric, which would require 200 bits, or 25 bytes of I/O for those 200 FLOPS) .
For a 200 MFLOP processor, the average sustained rate will be almost 25 MB/sec, far more than
either the compulsory I/O data rate or the checkpoint I/O data rate. Peak rates are higher still, and in
fact are higher than 200 MB/sec of requests sustained over several CPU seconds.

5.2. /O Access Characteristics

The I/O accesses that the applications make can be characterized in several ways. These included
the total amount of I/O, the read/write ratio both overall and for given files, and the size of each
individual 1/O, again overall and for each file. In looking at these characteristics, however, only
“large” files were considered. In most cases, these files were over a few megabytes long, and some

were hundreds of megabytes long. While “small” files, which include parameter files and human-

-14-

read text output, are important, they do not contribute much to the overall I/O that a supercomputer

application must do, as their contribution is dwarfed by accesses to large machine-generated data

files.

All of the programs, with the exception of gcm and upw, made many read and write accesses, and

did many I/Os, as can be seen by Table 2. These numbers are per second of CPU time used by the

process.
Program Reads Writes Reads Writes Avg /O | Read/Write
(MB/sec) | (MB/sec) | (I0s/sec) (I10s/sec) |size (KB) |ratio (data)
bvi 12.3 5.34 913 185 16.1 2.31
ccm 4.25 3.96 135 128 31.9 1.07
forma 62.2 5.68 1990 300 304 11.0
gem 0.0107 0.12 0.34 3.85 31.9 0.089
les 24.0 25.2 74 81 325 0.95
upw 0.0012 0.0100 0.037 3.05 32.7 0.12
venus 26.4 14.7 60 32 456 1.80

Table 2. /O request rates and data rates of the traced applications.

The only applications which had read/write ratios much under one were gem and upw, as can be
seen in Table 2. They were the programs that did not do much I/O in the first place, since they did
little 1/O other than compulsory writes. The programs that did higher amounts of I/O had higher
read/write ratios because, for those programs, the disk was used to hold large parts of the array.
For each cycle of the algorithm, each section of the data is written once. However, that data may be
read more than once so it can be used in the computation in different places. This pattern will
remain no matter how large the memory of the system gets, since a larger memory will simply

encourage larger problems, which will keep the same patterns. A file cache will not greatly change

-15 -

the read/write ratio to disk. The files are usually so large that they will not fit into the cache. Since
the entire file is both read and written each iteration, there are no “hot” blocks that can remain in the
cache between iterations. A cache might, however, decrease the read/write ratio to disk slightly

because “paging” the data array might show spatial locality for reads.

Access size varied between programs, but was relatively constant within programs. The access size
was completely under the programmer's control, so it varied according to how the algorithm was
implemented. As seen in Table 1, accesses on the large files ranged from 32 KB to 512 KB. The
notable exception was bvi, which used the SSD for most of its “disk” accesses. There was no seek
penalty for the SSD, so the small /O penalty was much less than it would be for a normal disk. A

SSD access still paid operating system overhead and transfer time, but it did not incur any latency as

a disk access would.
5.3. Cycles in Program /O

Since all of the programs implemented iterative algorithms, the programs' I/O patterns followed
cycles that matched the iterations of the program. Often, the data in the files would be read in the
same sequence and with the same 1/O request size each cycle. Even when the sequence was not the
same between cycles, each program had a typical I/O request size which stayed constant throughout
the program. Times of high data request rates also followed a pattern; request rate peaks were

generally evenly spaced through the program's execution.

I/O was bursty, as expected, but the bursts came in cycles. The demand patterns for all of the

cycles in a single application were remarkably similar, as Figures 3 and 4 show.

-16-

per
CPU second

|

|

!zt%

w«\

1
[
l l !H:!:!
5.0

i mwl';l i

Pmcs CPU time seconds 1sec resolution)

"

o l‘l
0.0

Figure 3. Data rate over time for venus.

*
‘1

ol \» AL

PmcessCPUumeseconds secmoluon

CPU second

ta rate er time for les.

File reference patterns also followed cycles. This was especially true for algorithms that operated
on an unchanging array that was larger than the program'’s memory size. For such applications, the
reference patterns were essentially identical from cycle to cycle. For other applications, the array
might change between iterations of the algorithm. For example, a common method in a CFD
problem is to create more data points in areas of interest for detailed examination. Since these areas
cannot be predicted in advance, the program itself identifies the areas and creates more points,

changing the data array and the disk reference patterns.

6. Caching Simulations

The traces collected from the applications can, by themselves, show the behavior of an individual
program. However, a supercomputer rarely runs one job per processor even when in batch mode.
CPU cycles would go unused if there were no additional programs to run because an application
often must wait for a disk access to complete, and all programs do some I/O. On a typical Cray Y-
MP system there are usually few enough I/O requests that n+] programs are sufficient to avoid
wasted cycles on n processors. This rule of thumb requires that programs fit their entire data array
in memory, since any program that must use the disk to store its data will do large amounts of /O
each cycle. If all currently in-memory programs make many I/O requests, it is likely that more than

one will be awaiting I/O all the time.
6.1. Cache Simulator

We constructed a cache simulator that models the behavior of a single CPU with multiple processes
making 1/O requests. For each process, there is an input trace in our format, which determines the
size of each I/O and the elapsed time between it and the next I/O. Using this information, a simple

scheduler built into the simulator, and a simple disk model, the overall sequence of I/Os that the

-18-

processes will make can be simulated. The position of our buffer simulator relative to the entire file

system is shown in Figure 5.

Figure 5. Path an /O takes from application request to disk.

The simulator uses a simple round-robin scheduler with a quantum that can be specified each time it
is run. The process-switching overhead, file system code overhead, and interrupt service time are

also parameters that can be set in the simulator.

The disk model, like the scheduler, is a simple one. Since ours were logical traces and we did not
model the file system, we could not use physical block numbers. Thus, seek times could only be
approximated. There was no queueing at the disks, so the completion time of a specific I/O was
dependent only on the location of the I/O and how “close™ the I/O was to the previous I/O. This

simplification significantly affected our results, as will be shown later.
6.2. Main Memory Buffering

The first set of simulation runs involved file caches that were small enough to fit in a Y-MP's main
memory. On a standard Cray, the file system cache is shared among all the processors; however,
we were only modeling one processor. To avoid modeling the dynamic division of the file cache
between the processors, we restricted the cache size to a fraction of the memory “allocated” to a
single processor. For example, in a system with 128 MW of memory, the file system cache might
take up between 4 MW and 16 MW of memory—5% to 12%. This would be distributed among

eight processors, though, so each processor could only use 1/8th of the available cache, assuming

-19-

all were running I/O-intensive jobs. In this example, cach processor would be limited to 0.5 to 2

MW of file cache space.

Very few of the applications traced had 1/O that fit into such a small cache. This, combined with the
sequential nature of the programs’ 1/O, meant that most logical I/Os resulted in disk accesses. This
is in contrast to the study in [5], that reported that up to 80% or more of the I/Os could be satisfied
in a file cache. In a supercomputer, 2 main-memory file system cache is thus used more as a speed-

matching and load-averaging buffer than it is to exploit access locality.

We used two techniques to decrease idle time for a given set of processes, thus increasing CPU
utilization. The first method was prefetching data from disk. Its success was not unexpected, as
[5] showed that prefetching was extremely useful. Because supercomputer I/O is both regular and
sequential, it was easy to predict the next data bytes the program would request. In several of the
programs, including les, an I/O request was not only sequential with the previous I/O, but was also
the same size. Thus, prefetching the amount of data just read allowed the application to continue

without waiting, but did not fill the cache with data that would be unused for some time.

The second method used was write-behind. While Sprite’s delayed writes [4] would have been
difficult to implement in the simulator, it was easy to allow a process to continue executing while
written data had not yet gone to disk. This would also be easier to implement on a supercomputer.
A separate process would be required to check all cache data and decide which of it goes to disk,
but the per-process overhead is high on many supercomputer operating systems because of the large
state which must be saved on process context switches. In Unix-like workloads, delayed writes
can often result in temporary files being deleted from the cache before they must be written to disk
(4,5]. However, most data written to & supercomputer's main memory file cache must go to disk
because iterations take hundreds of seconds and files are hundreds of megabytes long. There is

therefore little advantage to waiting a short time to see if data is deleted.

-20-

The main goal of using write-behind and prefetching is to reduce CPU idle time, given a set of
processes executing and requesting 1/O. Ideally, there should be no idle CPU cycles, and several of
our simulations approached that with just one or two 1/O intensive programs running at the same
time. The program that came closest to fully utilizing a CPU while doing large amounts of I/O was
les, since it was the only program that used asynchronous reads and writes explicitly. Clearly, its
designer spent much time optimizing it for the Cray Y-MP system. Venus was another program
benefiting from write-behind, though not as much from prefetching. In this program, the short
cycles of reading and writing several relatively small files required over 40 MB/s of bandwidth to
disk. While the disks were certainly capable of this rate, the seeks required by interleaving accesses
1o six different data files inserted extra delays. With write-behind, the delays did not affect the
programs’ running time as much. For example, writebehind reduced idle time from 211 seconds to

1 second for a simulation of two identical copies of venus running with a 128 MB cache.

Read-ahead and write-behind did not have all the effects we expected. We had expected that the
peak demands on the disks would decrease, and the /O request rate would remain relatively
constant over the execution time of the program. As can be seen from Figure 6, this did not happen
for several reasons. First, the simulator did not slow down disk access times when the disks had
many outstanding requests, as would happen in a real system from queueing delay. Because the
requests were logical file requests, it was impossible to map requests to individual disks for
queueing, so we used a constant access time distribution that did not depend on the number of
currently outstanding I/Os in the disk system. The second reason the request rate was not smoothed
out was bunching at times of high I/O request rates. Ideally, the programs should have their
periods of high I/O rate arranged in such a way that the high I/O rate period of one program comes
during the computation phase of another program. Often, though, the two programs would both

wait for I/O at the same time, such as when one program stops to request a large transfer of

-21-

W venus (2)
B venus (1)
:
100
time (seconds)
Figure 6.
Data rate for 2 simultaneously running copies of venus with a 32 MB cache.
(first 200 seconds of wall time)

uncached data. Such a transfer might take as long as 15 ms (the Cray Y-MP disks seck relatively
slowly). The other program might then make a similar request, requiring 15 ms as well. Both
requests would finish at approximately the same time, and the process would repeat. In this way,
the large seek and rotational delays might not be covered by computations in other processes, and

the requests would be unevenly spread out over time.

Another problem that occurred when two high-1/O programs ran simultaneously is that one of the
programs grabbed most of the buffers. This denied the other program a chance to do much I/O and
use the CPU while the first program was waiting. A limit on the number of buffers a process could
own did not provide relieve the problem, and actually worsened CPU utilization in several cases.
The disadvantage of artificially slowing down the process that was doing large amounts of 1/0 did
not outweigh the advantage of allowing multiple processes to run .

6.3. SSD Buffering

While supercomputers do some caching in their main memory, there is far more space available on
the SSD, which cannot be directly used as program memory. In addition, SSDs are built from less
expensive DRAM, instead of the expensive SRAM used in the Cray Y-MP's memory. Currently,

UNICOS 5.0 allows two options for using the SSD—system-managed buffers or user-managed
buffers. The advantage of the latter is that the user has more knowledge of which data to stage from
disk. However, managing that staging is a programming problem which many supercomputer
application programmers do not want to undertake. A system which uses this approach may
therefore find the SSD underutilized. While system-managed buffers in the SSD are less efficient

than user-managed buffers might be, they are considerably easier for the average user, as they

require no extra programming effort.

To simulate the SSD on the Cray Y-MP, we treated it as a huge main-memory cache, and added
per-block penalties for cache hits. These were approximately 1 ps per kilobyte transferred (at 1
GB/sec), with some additional overhead to set up the transfer. These times were relatively small

compared to the time required to execute a system call.

Several of our traces had small enough data sets that they fit into the SSD entirely. For these
programs, there was little or no idle time, as data was read from disk once and written back while
the program continued executing. Figure 8 shows an example of this, with two identical venus
programs running on the same CPU and not sharing data sets. Venus, bvi, and ccm all ran with
low idle times in the SSD. Gem and upw had low idle times in all of our simulations because they
did so few I/Os—even in an 8 MB cache, gem had only 1 second of idle time. Since les ran with
little idle time on both the SSD and main-memory cache (because of explicit asynchronous 1/0), all
but one of the applications nearly completely utilized a Cray Y-MP CPU by itself when using a 32
MW SSD cache by itself. The Cray Y-MP at NASA has a 256 MW SSD, so each processor’s
share is 32 MW. Almost all of the read requests were satisfied by the SSD, so there were very few
disk read requests. However, as can be seen from Figure 7, the writes from cache to disk still did

not come evenly; instead, they were bursty in the same way that the requests to cache were bursty.

-23-

B vomr(2)
: | venus(1)
é i !s |
it !
e o
£ - Al g
T
50 100 150
time (seconds)
Figure 7.
Data rate for 2 simultaneously running copies of venus with a 128 MB cache.
(first 200 seconds of wall time)

6.4. /O System Configuration

The best configuration for an I/O system, according to our simulations, is to provide as much SSD
storage as possible, and maintain a smaller main memory cache. The largest main memory cache
we believed would be reasonable, a 4 MW cache in a processor’s allotment of 16 MW, stll did not
allow most I/O-intensive programs to execute without waiting for I/O, even with read-ahead and
write-behind. The cache did not have enough buffer space to allow full read-ahead and write-
behind to relatively slow disks. Figure 8 shows the effects of cache size on the total execution time

of two simultaneously running venus programs.

SSD, on the other, appears to be a much better solution. In a 32 MW SSD, all of our programs
except one utilized the CPU over 99%. SSD is more likely than main memory to scale with
processor speed, since the constraints on an SSD memory’s speed, physical size, and distance from
the CPU are less likely to be affected by designing for a faster CPU. An SSD is appropriate for a
multprocessing environment as well; since the SSD communicates like a disk, multiple processors

can access it in file-block-sized chunks instead of word by word, as main memory is accessed.

500
—@— 4K cache blocks

-o— 8K cache blocks

n w ™
o o o
o o o
1 1 1

idle time (secs)

100+

0] L ! ! i 9 1 o
4 8 16 32 64 128 256
cache size (MB)

Figure 8.
Idle time while running two instances of venus with varying cache sizes. Execution time would be 761
seconds if there were no idle time.

Instead of low latency channels required for main memory, higher latency channels like those used

for network communications can be used.

7. Conclusions

While much attention has been given to CPU performance in supercomputers, the I/O system,
which includes the file cache, SSD, disks, and tape storage, will play an increasingly larger role in
utilizing the CPU efficiently. We have examined several high-1/O demand supercomputer
applications and shown that they are highly sequential and very regular in their access patterns.
This information can be used to better design a supercomputer I/O system to fully utilize a
supercomputer CPU, as our buffering simulations show. With a large SSD, only one or two

processes per processor are needed to keep the CPU fully utilized. While main memory sizes may

-25-

not scale as fast as processor speed, SSD sizes may scale more closely, since the constraints on
physical size, distance from the CPU, and small access speed are not as stringent for an SSD. By
implementing read-ahead and write-behind in a supercomputer’s file system and using a solid-state
disk, a few very large processes staging data to and from secondary storage can keep

supercomputer CPUs busy.

References

[1] Bonifas, C. Searching For a Unix Mass Storage System For a Supercomputer
Environment. In Tenth IEEE Symposium on Mass Storage Systems, 1990, pp.
129-133.

[2] Hill, M.D. Aspects of Cache Memory and Instruction Buffer Performance, Ph.D.
dissertation, Tech. Report No. UCB/CSD 87/381, University of California,
Berkeley, November 1987.

[3] NAS User Guide, Version 5.0, NAS Systems Division, NASA Ames Research
Center, Moffett Field, CA, January, 1990.

[4] Nelson, M.N., Welch, B.B., and Ousterhout, J.K. Caching in the Sprite Network
File System. ACM Transactions on Computer Systems, Vol. 6, No. 1 (February
1988).

[5] Ousterhout, J.K., Da Costa, H., Harrison, D., Kunze, J.A,, Kupfer, M., and
Thompson, J.G. A Trace-Driven analysis of the UNIX 4.2 BSD File System.
ACM Operating Systems Review, Vol. 19, No. 5 (1985), pp. 15-24.

[6] Peterson, V.L., Kim, J., Holst, T.L., Deiwert, G.S., Cooper, D.M., Watson,
A.B., and Bailey, F.R. Supercomputer Requirements for Selected Disciplines
Im:}”)gnant to Acrospace. Proceedings of the IEEE, Vol. 77, No. 7 (July 1989), pp.
1038-1054.

[7] Samples, A.D. Mache: No-Loss Trace Compaction. Tech. Rept. UCB/CSD 88/446
University of California, Berkeley, 1988.

[8] Williams, E., Myers, C.T., and Koskela, R. The Characterization of Two
Scientific Workloads Using the Cray X-MP Performance Monitor. In
Supercomputing ‘90, 1990.

-26-

Appendix

This appendix gives a detailed description of our trace format. All of our traces were in ASCII
instead of binary format. Surprisingly, text traces were shorter than binary traces. This savings
occurred by converting integers which took 4 bytes in binary format into variable-length printed
ASCIL. Since many values were only 1 or 2 printed characters, this conversion saved space. Text
traces have the added advantage of being machine-independent; in particular, there are no problems

with byte order within words or word length.

While our permanent traces are in our format, traces should be gathered in whatever way is most
convenient and converted to our format later. This has two advantages. First, there may already be
some tracing facilities in place on the system being traced. It is easier to make minor modifications
to gather a little more data than it is to rewrite all of the tracing code to generate output in our format.
Second, converting traces from the “natural” format to our format will require CPU cycles,
especially to convert time values from the local system clock to 10 s ticks. This post-processing

should be done after the trace has been collected so it doesn’t affect whatever is being traced.

Each trace record consists of up to 10 ficlds. Five of these are present in every trace record—
recordType, compression, startTime, deltaTime, and processTime. The compression
field determines which of the remaining five fields are present, as explained in the “include” file

which follows.

Processld is a unique identifier for the process which requested the 1/O which the trace record
represents. Usually, it is simplest to use whatever identifier the operating system assigns to the

process, as that is guaranteed to be unique for some time around each process’ execution.

-27-

The fileld ficld uniquely identifies all records of I/Os on a single file. If a file is opened several
times, it must be assigned a different fileId for each open. The identifier must be unique within
each process, and should be unique across the trace, if possible. While uniqueness across the trace
is not necessary, it is useful for tracking down bugs in the trace analysis software. Note that for
physical records, fileId is an identifier for the disk written to. Because each physical disk is only
“opené,d” once—by the operating system—all physical records for the same disk should use the

same fileld.

The operationld field identifies all records associated with a single call to read or write. The
logical record for that system call (there is only one logical record per read or write) can then be
associated with all of the physical I/Os it generated. This shows the translation from a logical file
position to physical disk blocks for an I/O. Like the fileld field, it must be unique within a

process, though uniqueness across the entire trace is preferable.

The offset and length fields have different meanings for logical and physical records. The record
type is determined by flags in recordType, as shown in the “include” file. For a logical record,
offset is the byte offset into the file, and length is the length of the request. These numbers may
be affected by flags in the compression field. In physical blocks, offsei is the physical block
accessed on disk, and length is the number of consecutive blocks, starting with offset, that are
accessed. All physical block numbers are relative to TRACE_BLOCK_SIZE; thus, if the file
system always does physical I/Os in 4 KB blocks, all block and length numbers in phys{cal records
will be multiples of 8, since TRACE_BLOCK_SIZE is 512.

The time fields are all treated as differences. StartTime is the difference between when this I/O
started and when the /O of the previous record started. CompletionTime is the difference

between when this /O started and when its completion was reported to the process. For physical

-28-

records, this will likely be the time between when the request was sent to disk and when the
interrupt occurred. For logical records, though, this time may be much longer, as a process is not
always restarted immediately when the 1/O it is awaiting finishes. Finally, processTime is the
difference in process CPU time between when this 1/O started and when this process’s previous [/O

started. All of these times are measured in units of 10 ps.

Here, then, is the include file which we used for the code which generated and interpreted the

traces.
TSR PR PSR SIS ittt
*
* jotrace.h --
*
* This file contains the declarations necessary to interpret the
*+ traces. It includes a definition of a full trace record and
* all of the flags used in the trace records.
*
B e e e e o o e e o o e S D e e B B (S R S R S S -
*/
/*
* These are the fields in an individual trace record. They are printed
* in the order they appear in the structure. The recordType, compression,
* startTime, completionTime, and processTime fields are always present.
* Flags in the compression field indicate whether the remaining fields
* are present, or whether the field values are inferred from previous
* records.
*/
struct traceRecord {
unsigned short recordType; /* type of trace record (see below) */
unsigned short compression; /* compression flags (see below) */
unsigned int offset; /* offset in file (logical) OR
* physical block */
unsigned int length: /* length of access */
unsigned long startTime; /* 1/0 start time (wall clock) */
unsigned long completionTime; /* 1/0 completion time (wall clock) */
unsigned int operationld; /* number to associate logical and
* physical 1/0s */
unsigned int fileld; /* unique file identifier */
unsigned int processlid; /* process that made the request (for
* logical I/0s only) */
unsigned int processTime; /* time in 10 ps ticks since this

* process made its last I/0 */

-29.-

/*
* Flags used in the recordType field.

*/
/*

* pescribes the type of data accessed in this record.

*/
#define TRACE_FILE_DATA 0x0 /* file (user) data */
#define TRACE_META DATA Ox1 /* metadata, such as indirect blocks */
#¢define TRACE_READAHEAD 0x2 /* readahead blocks requested by FS */
#define TRACE_VIRTUAL_MEM 0x3 /* blocks regquested by VM paging */

/t

* Is this a logical or physical record? The value of this flag can affect
* the interpretation of the rest of the record.
*/

#define TRACE_LOGICAL_RECORD 0x80

#define TRACE PHYSICAL RECORD 0x00

/i
* What type of access was requested?
*/
#define TRACE_READ 0x00
#define TRACE WRITE 0x40
/i
* Was the request synchronous or asynchronous?
>/
#define TRACE_SYNC 0x00
#define TRACE_ASYNC 0x08
/*
* This value for the recordType field is for a “comment” record. It is
* jgnored by any program reading the trace, but it can be used
* for human-readable comments. I used it to record
* correspondences between filelds and actual file names, as well as
* to identify each trace with information in the trace itself.
*/
#define TRACE_COMMENT Oxff
/%

* The next two flags are optional. They are for data analysis purposes
* only. If the trace is being used for simulations, they will be irrelevant.
*

* Was the reguest satisfied in the cache or were disk blocks necessary?

*/

#define TRACE_CACHE_HIT 0x00
#define TRACE_CACHE_MISS 0x20
/*

* If the block was in the cache, was it a readahead block?
*/

#define TRACE_RA HIT 0x10

f¥define TRACE_RA MISS 0x00

-30-

/*

* The next set of flags are the compression flags. These flags tell which
* information has been left out of the trace record and how to generate

* the missing information.

*/

/*

* If these flags are set, multiply the relevant value by 512. These
* flags should only be set if the relevant information is actually in
* the record. Thus, if the offset is not in this record, the

* TRACE_OFFSET_IN_BLOCKS flags should not be set.

#define TRACE_OFFSET_IN_BLOCKS 0x01
#define TRACE_LENGTH_IN BLOCKS 0x02
#define TRACE_BLOCK_SIZE 512

/
If any of these flags are set, the corresponding field is missing

from the trace record. The information in them may be computed as

follows:

processId: take from previous record in trace

fileld: take from previous record by this process

operationId: take from previous record of this file
(NOTE: for logical-only traces, this field is
useless and should be disregarded)

block: sequential with previous access to this file
(ie, previous record starting block + length)

length: take from previous record of this file

The program reading the traces should keep track of 32 open files
for each process. This is the maximum number most UNIX systems
allow open, and it’s unlikely that a process will actively access
more than that. If it does, the traces will still be readable;
they’ll just be quite long.

I1f either length or block is present, multiply by TRACE_BLOCK_SIZE
if the appropriate flag is set.

Time values are always expressed as differences in time. Start time
in the trace is startTime[cur] - startTime[cur-1]). Completion time
is completionTime[cur] - startTime[cur]. Process time is the
elapsed process time since the last I/0 for this process was started.
All time values are in in 10 pus units. Since time values are

always compressed, there are no compression flags for them.

* % % % % % % % % % % % X * % % % % * % % % ¥ ¥ ¥ * ¥ *

»

*/
#define TRACE_NO_LENGTH 0x04
#define TRACE_NO_BLOCK 0x40

#define TRACE_NO_PROCESSID 0x08
#define TRACE_NO_OPERATIONID 0x20
#define TRACE_NO_FILEID 0x80

-31-

